Breast cancer development and progression is regulated by growth factors and steroid hormones. Although the majority of human breast cancers expresses androgen receptor (AR), the role of androgens in breast tumorigenesis remains largely unexplored. Here we demonstrate that an AR ligand, 5-alpha-dihydrotestosterone (DHT), inhibits MCF-7 breast cancer cell growth induced by insulin like growth factor 1 (IGF-I). Our results show that DHT induces association of AR with IRS-1, the major IGF-1 receptor signaling molecule. The AR/IRS-1 complex translocates to the nucleus and is recruited to gene promoters containing androgen responsive elements causing an increase of AR transcriptional activity. Moreover, IRS-1 knockdown suggests that IRS-1/AR interaction decreases the ubiquitin/proteasome dependent degradation of AR, increasing its stability. Taken together, these data indicate that nuclear IRS-1 is a novel AR regulator required to sustain AR activity and demonstrate, for the first time in breast cancer cells, the existence of a functional interplay between the IGF system and AR. This interplay may represent the molecular basis of mechanisms through which androgens exert their inhibitory role on the proliferation of breast cancer cells.

Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells

LANZINO, Marilena;MORELLI, Catia;CASABURI, Ivan;ANDO', Sebastiano;SISCI, Diego
2009-01-01

Abstract

Breast cancer development and progression is regulated by growth factors and steroid hormones. Although the majority of human breast cancers expresses androgen receptor (AR), the role of androgens in breast tumorigenesis remains largely unexplored. Here we demonstrate that an AR ligand, 5-alpha-dihydrotestosterone (DHT), inhibits MCF-7 breast cancer cell growth induced by insulin like growth factor 1 (IGF-I). Our results show that DHT induces association of AR with IRS-1, the major IGF-1 receptor signaling molecule. The AR/IRS-1 complex translocates to the nucleus and is recruited to gene promoters containing androgen responsive elements causing an increase of AR transcriptional activity. Moreover, IRS-1 knockdown suggests that IRS-1/AR interaction decreases the ubiquitin/proteasome dependent degradation of AR, increasing its stability. Taken together, these data indicate that nuclear IRS-1 is a novel AR regulator required to sustain AR activity and demonstrate, for the first time in breast cancer cells, the existence of a functional interplay between the IGF system and AR. This interplay may represent the molecular basis of mechanisms through which androgens exert their inhibitory role on the proliferation of breast cancer cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/141244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact