Radiation tolerance of NROM memories is demonstrated at the level of industrial 4 Mbit memory embedded modules, specifically not designed for operation in radiation harsh environments. The memory fabricated in 0.18 um technology remains fully functional after total ionization doses exceeding 100 krad. The tests were performed by irradiating with γ-rays ( 60Co source) and 10 MeV 11B ions in active (during programming/erase and read-out) and passive (no bias) modes. Comprehensive statistics were obtained by using large memory arrays and comparison of the data with the parameters of irradiated single cells allowed deep understanding of the physical phenomena in the irradiated NROM devices for both moderate (< 1 Mrad) and large (> 1 Mrad) TID. The obtained data is currently employed in the design of the new generation of NROM memories, having improved radiation tolerance

Radiation tolerance of NROM memories is demonstrated at the level of industrial 4 Mbit memory embedded modules, specifically not designed for operation in radiation harsh environments. The memory fabricated in 0.18 um technology remains fully functional after total ionization doses exceeding 100 krad. The tests were performed by irradiating with gamma-rays ((60)Co source) and 10 MeV (11)B ions in active (during programming/erase and read-out) and passive (no bias) modes. Comprehensive statistics were obtained by using large memory arrays and comparison of the data with the parameters of irradiated single cells allowed deep understanding of the physical phenomena in the irradiated NROM devices for both moderate (<1 Mrad) and large (>1 Mrad) TID. The obtained data is currently employed in the design of the new generation of NROM memories, having improved radiation tolerance

Radiation Tolerance of NROM Embedded Products

PACE, Calogero;CRUPI, Felice;
2010

Abstract

Radiation tolerance of NROM memories is demonstrated at the level of industrial 4 Mbit memory embedded modules, specifically not designed for operation in radiation harsh environments. The memory fabricated in 0.18 um technology remains fully functional after total ionization doses exceeding 100 krad. The tests were performed by irradiating with gamma-rays ((60)Co source) and 10 MeV (11)B ions in active (during programming/erase and read-out) and passive (no bias) modes. Comprehensive statistics were obtained by using large memory arrays and comparison of the data with the parameters of irradiated single cells allowed deep understanding of the physical phenomena in the irradiated NROM devices for both moderate (<1 Mrad) and large (>1 Mrad) TID. The obtained data is currently employed in the design of the new generation of NROM memories, having improved radiation tolerance
Radiation tolerance of NROM memories is demonstrated at the level of industrial 4 Mbit memory embedded modules, specifically not designed for operation in radiation harsh environments. The memory fabricated in 0.18 um technology remains fully functional after total ionization doses exceeding 100 krad. The tests were performed by irradiating with γ-rays ( 60Co source) and 10 MeV 11B ions in active (during programming/erase and read-out) and passive (no bias) modes. Comprehensive statistics were obtained by using large memory arrays and comparison of the data with the parameters of irradiated single cells allowed deep understanding of the physical phenomena in the irradiated NROM devices for both moderate (< 1 Mrad) and large (> 1 Mrad) TID. The obtained data is currently employed in the design of the new generation of NROM memories, having improved radiation tolerance
Floating gate memories; ONO; Radiation effects; radiation hardening
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/146768
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact