A hybrid numerical-experimental methodology for the dynamic characterization of automotive rubber connections is presented. In order to predict the dynamic response of automotive structures, a finite element (FE) modelling approach is often used. A critical factor in the achievement of accurate dynamic or static predictions is modelling of non-linear connections between closures and car body. An experimental method is proposed for characterizing the dynamic behaviour of automotive weather strips. By means of a dedicated test bed, a frequency-dependent model of complex stiffness is identified for both normal and tangential loading conditions. The stiffness variability with quasi-static deformation amplitude and deformed shape is also investigated. The experimental data are then used to identify a linear FE model of vehicle rubber connections within the range 0-300 Hz. A simplified car door model and frequency response function (FRF) correlations are used to obtain an experimental validation of the proposed modelling approach.
Dynamic characterization and numerical modelling of automotive rubber connections
MUNDO, DOMENICO;
2006-01-01
Abstract
A hybrid numerical-experimental methodology for the dynamic characterization of automotive rubber connections is presented. In order to predict the dynamic response of automotive structures, a finite element (FE) modelling approach is often used. A critical factor in the achievement of accurate dynamic or static predictions is modelling of non-linear connections between closures and car body. An experimental method is proposed for characterizing the dynamic behaviour of automotive weather strips. By means of a dedicated test bed, a frequency-dependent model of complex stiffness is identified for both normal and tangential loading conditions. The stiffness variability with quasi-static deformation amplitude and deformed shape is also investigated. The experimental data are then used to identify a linear FE model of vehicle rubber connections within the range 0-300 Hz. A simplified car door model and frequency response function (FRF) correlations are used to obtain an experimental validation of the proposed modelling approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.