We have investigated the properties of soft breakdown (SBD) in thin oxide (4.5 nm) nMOSFETs with measurements of the gate and substrate leakage currents using the carrier separation technique. We have observed that, at lower gate voltages, the level of the substrate current exhibits a plateau. We propose that the observed plateau is due to the Shockley-Hall-Read (SHR) generation of hole-electron pairs in the space charge region and at the Si-SiO2 interface. At higher voltages, the substrate current steeply increases with voltage, due to a tunneling mechanism, trap-assisted or due to a localized effective thinning of the oxide, from the substrate valence band to the gate conduction band, which becomes possible for gate voltages higher than the threshold voltage. The proposed interpretation is consistent with the results of measurements performed at different operating conditions, in the presence of light and in the case of substrate reverse bias. The presented results are also useful for characterizing the performance of MOSFETs after SBD.

Characterization of soft breakdown in thin oxide NMOSFETs based on the analysis of the substrate current

CRUPI, Felice;
2001-01-01

Abstract

We have investigated the properties of soft breakdown (SBD) in thin oxide (4.5 nm) nMOSFETs with measurements of the gate and substrate leakage currents using the carrier separation technique. We have observed that, at lower gate voltages, the level of the substrate current exhibits a plateau. We propose that the observed plateau is due to the Shockley-Hall-Read (SHR) generation of hole-electron pairs in the space charge region and at the Si-SiO2 interface. At higher voltages, the substrate current steeply increases with voltage, due to a tunneling mechanism, trap-assisted or due to a localized effective thinning of the oxide, from the substrate valence band to the gate conduction band, which becomes possible for gate voltages higher than the threshold voltage. The proposed interpretation is consistent with the results of measurements performed at different operating conditions, in the presence of light and in the case of substrate reverse bias. The presented results are also useful for characterizing the performance of MOSFETs after SBD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/156692
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact