In this paper, a comprehensive study of hot-carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: 1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; 2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and 3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.

In this paper, a comprehensive study of hot-carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: 1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; 2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and 3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.

Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs

CRUPI, Felice;PACE, Calogero;
2009-01-01

Abstract

In this paper, a comprehensive study of hot-carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: 1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; 2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and 3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.
2009
In this paper, a comprehensive study of hot-carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: 1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; 2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and 3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.
Germanium; High-k; Hot carrier (HC); Impact ionization; Negative bias temperature instability (NBTI); pMOSFET
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/157871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact