We present a novel fast bistable nematic cell with intrinsic grey scale. The geometry of a single pixel is the usual sandwich one, with tow conductive flat plates that contain a film of nematic material with positive dielectric anisotropy. An electric field is applied perpendicularly to the boundary plates. This novel deice works by controlling the creation and the erasure of surface defects on a suitable surface when the applied electric field is strong enough to achieve the anchoring breaking condition: (xi) equals L, where (xi) is the coherence length of the electric field and L is the anchoring extrapolation length. Note that these surface defects should disappear onto a usual monostable substrate, due to topological constraints. Particular surface conditions are required to stabilize them. The surface defects depolarize the incident light and, as their density can be modulated, a grey scale can be achieved. Up to now, the maximum measured optical contrast is 200:1. The typical writing and erasing voltages are in the order of 50 Volts for a pulse length of 50 microsecond(s) ec on a sample of 5 micrometers thickness.

Fast bistable nematic display using surface defects

BARBERI, Riccardo Cristoforo;BARTOLINO, Roberto;
1997-01-01

Abstract

We present a novel fast bistable nematic cell with intrinsic grey scale. The geometry of a single pixel is the usual sandwich one, with tow conductive flat plates that contain a film of nematic material with positive dielectric anisotropy. An electric field is applied perpendicularly to the boundary plates. This novel deice works by controlling the creation and the erasure of surface defects on a suitable surface when the applied electric field is strong enough to achieve the anchoring breaking condition: (xi) equals L, where (xi) is the coherence length of the electric field and L is the anchoring extrapolation length. Note that these surface defects should disappear onto a usual monostable substrate, due to topological constraints. Particular surface conditions are required to stabilize them. The surface defects depolarize the incident light and, as their density can be modulated, a grey scale can be achieved. Up to now, the maximum measured optical contrast is 200:1. The typical writing and erasing voltages are in the order of 50 Volts for a pulse length of 50 microsecond(s) ec on a sample of 5 micrometers thickness.
1997
lcd; LIQUID CRYSTALS; BISTABILITY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/158653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact