Nickel-based super alloys are widely employed in critical applications, mainly in aerospace, marine, and chemical industries, concerning the production of high-performance artifacts. These alloys are considered as hard-to-cut materials, because of their modest machinability, so it is very difficult to implement in an industrial context high-speed machining processes that can lead to higher quality products, with improved mechanical characteristics and higher dimensional accuracy, and increase productivity. Among these alloys stands out Waspaloy, thanks to its very high mechanical properties, such as stiffness and strength to weight ratio. In order to implement effective machining processes, it is important to analyze the behavior of the material during machining in terms of variables of industrial interest (forces, tool wear, etc.). The aim of this paper is to disclose the results of an experimental investigation aimed to determine the effects of different cutting parameters on cutting forces, chip morphology, tool wear, and temperature at tool-chip interface, during orthogonal machining of Waspaloy (45 HRC). Experiments were performed in different lubri-cooling conditions (dry, wet, and cryogenic) and at varying cutting conditions (cutting speed and feed rate).

Machinability of Waspaloy under different cutting and lubri-cooling conditions

Rinaldi, S.;Caruso, S.;Umbrello, D.;Filice, L.;
2018-01-01

Abstract

Nickel-based super alloys are widely employed in critical applications, mainly in aerospace, marine, and chemical industries, concerning the production of high-performance artifacts. These alloys are considered as hard-to-cut materials, because of their modest machinability, so it is very difficult to implement in an industrial context high-speed machining processes that can lead to higher quality products, with improved mechanical characteristics and higher dimensional accuracy, and increase productivity. Among these alloys stands out Waspaloy, thanks to its very high mechanical properties, such as stiffness and strength to weight ratio. In order to implement effective machining processes, it is important to analyze the behavior of the material during machining in terms of variables of industrial interest (forces, tool wear, etc.). The aim of this paper is to disclose the results of an experimental investigation aimed to determine the effects of different cutting parameters on cutting forces, chip morphology, tool wear, and temperature at tool-chip interface, during orthogonal machining of Waspaloy (45 HRC). Experiments were performed in different lubri-cooling conditions (dry, wet, and cryogenic) and at varying cutting conditions (cutting speed and feed rate).
2018
Cutting; Lubri-cooling conditions; Machinability; Waspaloy; Control and Systems Engineering; Software; Mechanical Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Industrial and Manufacturing Engineering
File in questo prodotto:
File Dimensione Formato  
JAMT_draft.pdf

accesso aperto

Descrizione: The publisher version is available at https://link.springer.com/article/10.1007/s00170-017-1133-0; DOI: 10.1007/s00170-017-1133-0; Source: Springer
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/269620
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact