Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity

Frattaruolo, Luca;Cappello, Anna Rita;
2017-01-01

Abstract

Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.
2017
Antineoplastic Agents, Biosynthetic Pathways, Cell Line, Tumor, Cell Proliferation, Genomics, Humans, Neoplasms, Peptides Cyclic, Streptomyces, Thioamides, Multigene Family, Biochemistry, Molecular Medicine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/271378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 73
social impact