This paper aims to carry out an archaeometric characterization of mortar samples taken from an underwater environment. The fishpond of the archaeological site of Castrum Novum (Santa Marinella, Rome, Italy) was chosen as a pilot site for experimentation. The masonry structures reached the maximum thickness at the apex of the fishpond (4.70 m) and consisted of a concrete conglomerate composed of slightly rough stones of medium size bound with non-hydraulic mortar. After sampling, for a complete characterization of selected mortar fragments, different and complementary techniques (stereomicroscopy, polarizing optical microscopy, and X-ray powder diffraction analysis) were carried out in order to: A) define the minero-petrographic features; and b) investigate their state of conservation. The obtained data allowed the determination of the main constituents of mortars from a compositional point of view. The raw materials, in fact, were quite homogeneous, as well as the ratio in which they were mixed, confirming the typical "recipe" used in Roman times to manufacture hydraulic-type mortars by adding pozzolana. At the same time, it was possible to identify the various degradation processes we were interested in, namely, biological colonization (bio-fouling) that develops differently according to environmental conditions. Based on characterization phase results, the research will help to develop adequate techniques for intervention (innovative tools and methods for the protection of underwater cultural heritage) with particular regard to cleaning and consolidating procedures to be carried out directly in situ. View Full-Text

An integrated analytical approach to define the compositional and textural features of mortars used in the underwater archaeological site of castrum novum (Santa marinella, rome, italy)

Randazzo L.;Ricca M.;Ruffolo S.;AQUINO, MARCO;La Russa M. F.
2019

Abstract

This paper aims to carry out an archaeometric characterization of mortar samples taken from an underwater environment. The fishpond of the archaeological site of Castrum Novum (Santa Marinella, Rome, Italy) was chosen as a pilot site for experimentation. The masonry structures reached the maximum thickness at the apex of the fishpond (4.70 m) and consisted of a concrete conglomerate composed of slightly rough stones of medium size bound with non-hydraulic mortar. After sampling, for a complete characterization of selected mortar fragments, different and complementary techniques (stereomicroscopy, polarizing optical microscopy, and X-ray powder diffraction analysis) were carried out in order to: A) define the minero-petrographic features; and b) investigate their state of conservation. The obtained data allowed the determination of the main constituents of mortars from a compositional point of view. The raw materials, in fact, were quite homogeneous, as well as the ratio in which they were mixed, confirming the typical "recipe" used in Roman times to manufacture hydraulic-type mortars by adding pozzolana. At the same time, it was possible to identify the various degradation processes we were interested in, namely, biological colonization (bio-fouling) that develops differently according to environmental conditions. Based on characterization phase results, the research will help to develop adequate techniques for intervention (innovative tools and methods for the protection of underwater cultural heritage) with particular regard to cleaning and consolidating procedures to be carried out directly in situ. View Full-Text
Hydraulic-type mortars; Minero-petrographic analysis; Pozzolana; Restoration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/295176
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact