In recent years, human adenovirus (HAdV) infections have shown a high clinical impact in both immunosuppressed and immunocompetent patients. The research into specific antiviral drugs for the treatment of HAdV infections in immunocompromised patients constitutes a principal objective for medicinal chemistry due to the lack of any specific secure drug to treat these infections. In this study, we report a small-molecule library (67 compounds) designed from an optimization process of piperazine-derived urea privileged structures and their biological evaluation: antiviral activity and cytotoxicity. The active compounds selected were further evaluated to gain mechanistic understanding for their inhibition. Twelve derivatives were identified that inhibited HAdV infections at nanomolar and low micromolar concentrations (IC50 from 0.6 to 5.1 μM) with low cytotoxicity. In addition, our mechanistic assays suggested differences in the way the derivatives exert their anti-HAdV activity targeting transcription, DNA replication and later steps in the HAdV replication cycle. Furthermore, eight of the 12 studied derivatives blocked human cytomegalovirus (HCMV) DNA replication at low micromolar concentrations. The data provided herein indicates that the 12 thiourea/urea piperazine derivatives studied may represent potential lead compounds for clinical evaluation and development of new anti-HAdV drugs.

Optimization of piperazine-derived ureas privileged structures for effective –antiadenovirus agents

Mazzotta S.;Aiello F.;
2020-01-01

Abstract

In recent years, human adenovirus (HAdV) infections have shown a high clinical impact in both immunosuppressed and immunocompetent patients. The research into specific antiviral drugs for the treatment of HAdV infections in immunocompromised patients constitutes a principal objective for medicinal chemistry due to the lack of any specific secure drug to treat these infections. In this study, we report a small-molecule library (67 compounds) designed from an optimization process of piperazine-derived urea privileged structures and their biological evaluation: antiviral activity and cytotoxicity. The active compounds selected were further evaluated to gain mechanistic understanding for their inhibition. Twelve derivatives were identified that inhibited HAdV infections at nanomolar and low micromolar concentrations (IC50 from 0.6 to 5.1 μM) with low cytotoxicity. In addition, our mechanistic assays suggested differences in the way the derivatives exert their anti-HAdV activity targeting transcription, DNA replication and later steps in the HAdV replication cycle. Furthermore, eight of the 12 studied derivatives blocked human cytomegalovirus (HCMV) DNA replication at low micromolar concentrations. The data provided herein indicates that the 12 thiourea/urea piperazine derivatives studied may represent potential lead compounds for clinical evaluation and development of new anti-HAdV drugs.
2020
Adenovirus; Antiviral drug; Privileged structures; Thiourea/urea piperazine derivatives
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/296654
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact