The behavior of FRCM (Fabric Reinforced Cementitious Mortar) confined clay brick columns is analyzed in this paper. The results of an experimental investigation conducted on small-scale columns made by clay brick masonry confined with steel-FRCM (or Steel Reinforced Grout. SRG), PBO (poly-paraphenylene-benzo-bisoxazole) FRCM and basalt-FRCM, tested under monotonic compressive load, are described and discussed. Tests were conducted on thirteen prismatic columns; eleven columns (two unconfined and nine confined) were tested under concentric load while an eccentric load was applied on two confined columns. For each confinement system, the parametrs investigated were the 'confinement ratio', the 'load eccentricity' and the 'overlap configuration of the fiber fabrics'. FRCM confinement improved the structural response of masonry columns in terms of ultimate strength, ultimate strain and ductility. Some models from the literature were also examined to evaluate their applicability in predicting the axial capacity of confined columns.

Analysis of the behavior of clay brick masonry columns

Luciano Ombres
Membro del Collaboration Group
;
Salvatore Verre
Membro del Collaboration Group
2020-01-01

Abstract

The behavior of FRCM (Fabric Reinforced Cementitious Mortar) confined clay brick columns is analyzed in this paper. The results of an experimental investigation conducted on small-scale columns made by clay brick masonry confined with steel-FRCM (or Steel Reinforced Grout. SRG), PBO (poly-paraphenylene-benzo-bisoxazole) FRCM and basalt-FRCM, tested under monotonic compressive load, are described and discussed. Tests were conducted on thirteen prismatic columns; eleven columns (two unconfined and nine confined) were tested under concentric load while an eccentric load was applied on two confined columns. For each confinement system, the parametrs investigated were the 'confinement ratio', the 'load eccentricity' and the 'overlap configuration of the fiber fabrics'. FRCM confinement improved the structural response of masonry columns in terms of ultimate strength, ultimate strain and ductility. Some models from the literature were also examined to evaluate their applicability in predicting the axial capacity of confined columns.
2020
masonry columns, FRCM, confinement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/298345
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 18
social impact