In this paper, a novel algorithm is formulated and implemented for optimum path planning of parallel manipulators. A multi-objective optimisation problem has been formulated for an efficient numerical solution procedure through kinematic and dynamic features of manipulator operation. Computational economy has been obtained by properly using a genetic algorithm to search an optimal solution for path spline-functions. Numerical characteristics of the numerical solving procedure have been outlined through a numerical example applied to Cassino Parallel Manipulator (CaPaMan) both for path planning and design purposes.

Optimum Path Planning of CaPaMan (Cassino Parallel Manipulator) by Using Inverse Dynamics

CARBONE, Giuseppe
;
2008

Abstract

In this paper, a novel algorithm is formulated and implemented for optimum path planning of parallel manipulators. A multi-objective optimisation problem has been formulated for an efficient numerical solution procedure through kinematic and dynamic features of manipulator operation. Computational economy has been obtained by properly using a genetic algorithm to search an optimal solution for path spline-functions. Numerical characteristics of the numerical solving procedure have been outlined through a numerical example applied to Cassino Parallel Manipulator (CaPaMan) both for path planning and design purposes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/301437
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 21
social impact