Let k be a number field, let A be a commutative algebraic group defined over k and let p be a prime number. Let A[p] denote the p-torsion subgroup of A. We give some sufficient conditions for the local-global divisibility by p in A and the triviality of the Tate-Shafarevich group III(k, A[p]). When A is a principally polarized abelian variety, those conditions imply that the elements of the Tate-Shafarevich group III(k, A) are divisible by p in the Weil-Chatelet group H^1 (k, A) and the local-global principle for divisibility by p holds in H^r (k, A), for all r >= 0.

Divisibility questions in commutative algebraic groups

Paladino L.
2019-01-01

Abstract

Let k be a number field, let A be a commutative algebraic group defined over k and let p be a prime number. Let A[p] denote the p-torsion subgroup of A. We give some sufficient conditions for the local-global divisibility by p in A and the triviality of the Tate-Shafarevich group III(k, A[p]). When A is a principally polarized abelian variety, those conditions imply that the elements of the Tate-Shafarevich group III(k, A) are divisible by p in the Weil-Chatelet group H^1 (k, A) and the local-global principle for divisibility by p holds in H^r (k, A), for all r >= 0.
2019
Commutative algebraic groups; Local-global divisibility; Tate-Shafarevich group
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/301940
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact