PALADINO, Laura

PALADINO, Laura  

Dipartimento di Matematica e Informatica  

Mostra records
Risultati 1 - 19 di 19 (tempo di esecuzione: 0.02 secondi).
Titolo Data di pubblicazione Autore(i) File
A survey of local-global methods for Hilbert's tenth problem 1-gen-2024 Anscombe, Sylvy; Karemaker, Valentijn; Kisakürek, Zeynep; Mehmeti, Vlerë; Pagano, Margherita; Paladino, Laura
Cohomology of groups acting on vector spaces over finite fields 1-gen-2023 Lombardo, Davide; Paladino, Laura
Divisibility questions in commutative algebraic groups 1-gen-2019 Paladino, L.
Elliptic curves with ℚ(ε[3]) = ℚ(ζ3) and counterexamples to local-global divisibility by 9 1-gen-2010 Paladino, L.
Fields generated by torsion points of elliptic curves 1-gen-2016 Bandini, A.; Paladino, L.
Local-global divisibility by 4 in elliptic curves defined over ℚ 1-gen-2010 Paladino, L.
Local-global divisibility on algebraic tori 1-gen-2023 Alessandrì, Jessica; Chirivì, Rocco; Paladino, Laura
Local-global questions for divisibility in commutative algebraic groups 1-gen-2022 Dvornicich, R.; Paladino, L.
Local–global divisibility on algebraic tori 1-gen-2024 Alessandri, J.; Chirivi, R.; Paladino, L.
Number fields generated by the 3-torsion points of an elliptic curve 1-gen-2012 Bandini, A.; Paladino, L.
On 5-torsion of CM elliptic curves 1-gen-2018 Paladino, L.
On 7-division fields of CM elliptic curves 1-gen-2023 Paladino, Laura; Alessandrì, Jessica
On counterexamples to local-global divisibility in commutative algebraic groups 1-gen-2012 Paladino, L.
On local-global divisibility by $p^2$ in elliptic curves 1-gen-2011 Paladino, Laura; Ranieri, Gabriele; Viada, Evelina
On local-global divisibility by pnin elliptic curves 1-gen-2012 Paladino, L.; Ranieri, G.; Viada, E.
On preperiodic points of rational functions defined over Fp(t) 1-gen-2016 Canci, J. K.; Paladino, L.
On the division fields of an elliptic curve and an effective bound to the hypotheses of the local-global divisibility 1-gen-2022 Paladino, Laura; Dvornicich, Roberto
On the minimal set for counterexamples to the local-global principle 1-gen-2014 Paladino, L.; Ranieri, G.; Viada, E.
Preperiodic points for rational functions defined over a global field in terms of good reduction 1-gen-2016 Canci, J. K.; Paladino, L.