Cellulose is the main component of lignocellulosic biomass. Its direct chemocatalytic conversion into lactic acid (LA), a powerful biobased chemical platform, represents an important, and more easily scalable alternative to the fermentative way. In this paper, we present the selective hydrothermal conversion of cellulose and simple sugars into LA, under mild reaction conditions in presence of ErCl3 grafted on the mesoporous silica (MCM-41) surface. High yields and selectivity were obtained for the conversion of sugars under microwave (MW) irradiation at a relatively low temperature (200 °C) and short reaction times (10 min) under microwave (MW) irradiation. Ultrasounds (US) pre-treatment was investigated to reduce the cellulose crystallinity, before the MW-assisted conversion, providing LA with a yield of 64% within 90 min at 220 °C below the subcritical water conditions with increased operational safety. We finally discuss the scalability of the process and the recyclability of the catalyst.

Combined ultrasound/microwave chemocatalytic method for selective conversion of cellulose into lactic acid

Paola Costanzo;Anastasia Macario;Maria Luisa Di Gioia;Monica Nardi;
2019

Abstract

Cellulose is the main component of lignocellulosic biomass. Its direct chemocatalytic conversion into lactic acid (LA), a powerful biobased chemical platform, represents an important, and more easily scalable alternative to the fermentative way. In this paper, we present the selective hydrothermal conversion of cellulose and simple sugars into LA, under mild reaction conditions in presence of ErCl3 grafted on the mesoporous silica (MCM-41) surface. High yields and selectivity were obtained for the conversion of sugars under microwave (MW) irradiation at a relatively low temperature (200 °C) and short reaction times (10 min) under microwave (MW) irradiation. Ultrasounds (US) pre-treatment was investigated to reduce the cellulose crystallinity, before the MW-assisted conversion, providing LA with a yield of 64% within 90 min at 220 °C below the subcritical water conditions with increased operational safety. We finally discuss the scalability of the process and the recyclability of the catalyst.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303767
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact