Porphyrins are a versatile class of molecules, which have attracted attention over the years due to their electronic, optical and biological properties. Self-assembled monolayers of porphyrins were widely studied on metal surfaces in order to understand the supramolecular organization of these molecules, which is a crucial step towards the development of devices starting from the bottom-up approach. This perspective could lead to tailor the interfacial properties of the surface, depending on the specific interaction between the molecular assembly and the metal surface. In this study, we revisit the investigation of the assembly of zinc-tetraphenylporphyrins on Au(111) in order to explore the adsorption of the molecular network on the noble metal substrate. The combined analysis of scanning tunneling microscopy (STM) imaging and core levels photoemission spectroscopy measurements support a peculiar arrangement of the ZnTPP molecular network, with Zn atoms occupying the bridge sites of the Au surface atoms. Furthermore, we prove that, at few-layers coverage, the interaction between the deposited layers allows a relevant molecular mobility of the adlayer, as observed by STM and supported by core levels photoemission analysis.

Zinc(II) tetraphenylporphyrin on Au(111) investigated by scanning tunnelling microscopy and photoemission spectroscopy measurements

Oreste De Luca
;
Tommaso Caruso;Ilenia Grimaldi;Alfonso Policicchio;Vincenzo Formoso;Daniela Pacile';Marco Papagno;Raffaele Giuseppe Agostino
2020-01-01

Abstract

Porphyrins are a versatile class of molecules, which have attracted attention over the years due to their electronic, optical and biological properties. Self-assembled monolayers of porphyrins were widely studied on metal surfaces in order to understand the supramolecular organization of these molecules, which is a crucial step towards the development of devices starting from the bottom-up approach. This perspective could lead to tailor the interfacial properties of the surface, depending on the specific interaction between the molecular assembly and the metal surface. In this study, we revisit the investigation of the assembly of zinc-tetraphenylporphyrins on Au(111) in order to explore the adsorption of the molecular network on the noble metal substrate. The combined analysis of scanning tunneling microscopy (STM) imaging and core levels photoemission spectroscopy measurements support a peculiar arrangement of the ZnTPP molecular network, with Zn atoms occupying the bridge sites of the Au surface atoms. Furthermore, we prove that, at few-layers coverage, the interaction between the deposited layers allows a relevant molecular mobility of the adlayer, as observed by STM and supported by core levels photoemission analysis.
2020
self-assembled monolayer, porphyrin, STM, photoemission spectroscopy, gold surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/305544
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact