In the last decades, many researchers investigated the relation between environmental pollution and the degradation phenomena on the built heritage, because of their rapid increase and growing harmfulness. Consequently, the identification of the main pollution sources has become essential to define mitigation actions against degradation and alteration phenomena of the stone materials. In this way, the present paper is focused on the study of the effect of air pollution on archaeological buildings in Historic Cairo. A multi-methodological approach was used to obtain information about the chemical composition of examined black crusts and to clarify their correlation with the air pollution, specifically the heavy metals and the carbonaceous fraction, their main sources, and their impact on the state of conservation of the studied sites. All specimens were characterized by polarized optical microscopy (POM), X-Ray Diffraction (XRD), Electron Probe Micro Analyser coupled with energy dispersive X-ray spectrometry (EPMA-EDS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and Thermo-gravimetric analysis (TGA). The study conducted on heavy metals and carbonaceous fraction showed that the greatest contribution of the accumulation of pollutants is attributable to vehicular traffic and industrial activities, the main polluting sources in Cairo city. Furthermore, the comparison with other studies conducted on the carbonaceous fraction in the black crusts coming from both European and non-European cities, has allowed to discriminate the contribution of the primary and secondary polluting sources. Finally, the correlation of the data obtained on the heavy metals and the carbonaceous fraction allowed to formulate important hypothesis about the processes of sulphation.

The environmental impact of air pollution on the built heritage of historic Cairo (Egypt)

Rovella N.;Randazzo L.;Barca D.;La Russa M. F.
2020

Abstract

In the last decades, many researchers investigated the relation between environmental pollution and the degradation phenomena on the built heritage, because of their rapid increase and growing harmfulness. Consequently, the identification of the main pollution sources has become essential to define mitigation actions against degradation and alteration phenomena of the stone materials. In this way, the present paper is focused on the study of the effect of air pollution on archaeological buildings in Historic Cairo. A multi-methodological approach was used to obtain information about the chemical composition of examined black crusts and to clarify their correlation with the air pollution, specifically the heavy metals and the carbonaceous fraction, their main sources, and their impact on the state of conservation of the studied sites. All specimens were characterized by polarized optical microscopy (POM), X-Ray Diffraction (XRD), Electron Probe Micro Analyser coupled with energy dispersive X-ray spectrometry (EPMA-EDS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and Thermo-gravimetric analysis (TGA). The study conducted on heavy metals and carbonaceous fraction showed that the greatest contribution of the accumulation of pollutants is attributable to vehicular traffic and industrial activities, the main polluting sources in Cairo city. Furthermore, the comparison with other studies conducted on the carbonaceous fraction in the black crusts coming from both European and non-European cities, has allowed to discriminate the contribution of the primary and secondary polluting sources. Finally, the correlation of the data obtained on the heavy metals and the carbonaceous fraction allowed to formulate important hypothesis about the processes of sulphation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/309358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact