An example of the combined use of UAV photogrammetry and rockfall numerical simulation is described. A case of fragmental rockfall occurred on 17 November 2018 in Cárcavos, a site located in the Spanish municipality of Ayna (Albacete). The event caused a great social alarm as some infrastructure was affected. By using Unmanned Aerial Vehicle (UAV) photogrammetry, a high-resolution 3D model has been generated from point cloud data, and distribution and size of the fragmented rocks (more than 600 boulders) determined. The analysis has been performed through numerical simulations to: (1) reproduce the paths followed by the real blocks; and (2) estimate the speed and energy of the blocks, together with their heights, impacts and stopping points. Accordingly, source areas have been identified, including the potential source areas and unstable blocks on the slope. In addition, the exposed elements at risk (buildings, facilities, infrastructures, etc.) have been identified, and the effectiveness of mitigation measures against future events evaluated.
An integration of uav-based photogrammetry and 3d modelling for rockfall hazard assessment: The cárcavos case in 2018 (spain)
Iovine G.;Robustelli G.;
2021-01-01
Abstract
An example of the combined use of UAV photogrammetry and rockfall numerical simulation is described. A case of fragmental rockfall occurred on 17 November 2018 in Cárcavos, a site located in the Spanish municipality of Ayna (Albacete). The event caused a great social alarm as some infrastructure was affected. By using Unmanned Aerial Vehicle (UAV) photogrammetry, a high-resolution 3D model has been generated from point cloud data, and distribution and size of the fragmented rocks (more than 600 boulders) determined. The analysis has been performed through numerical simulations to: (1) reproduce the paths followed by the real blocks; and (2) estimate the speed and energy of the blocks, together with their heights, impacts and stopping points. Accordingly, source areas have been identified, including the potential source areas and unstable blocks on the slope. In addition, the exposed elements at risk (buildings, facilities, infrastructures, etc.) have been identified, and the effectiveness of mitigation measures against future events evaluated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.