This paper outlines the design of a novel mechatronic system for semi-automatic inspection and white-water in-pipe obstruction removals without the need for destructive methods or special-ized manpower. The device is characterized by a lightweight structure and high transportability. It is composed by a front, a rear and a central module that realize the worm-like locomotion of the robot with a specifically designed driving mechanism for the straight motion of the robot along the pipeline. The proposed mechatronic system is easily adaptable to pipes of various sizes. Each module is equipped with a motor that actuates three slider-crank-based mechanisms. The central module incorporates a length-varying mechanism that allows forward and backward locomotion. The device is equipped with specific low-cost sensors that allow an operator to monitor the device and locate an obstruction in real time. The movement of the device can be automatic or controlled manually by using a specific user-friendly control board and a laptop. Preliminary laboratory tests are reported to demonstrate the engineering feasibility and effectiveness of the proposed design, which is currently under patenting.

Design of peis: A low-cost pipe inspector robot

Galloro A.;Carbone G.
2021-01-01

Abstract

This paper outlines the design of a novel mechatronic system for semi-automatic inspection and white-water in-pipe obstruction removals without the need for destructive methods or special-ized manpower. The device is characterized by a lightweight structure and high transportability. It is composed by a front, a rear and a central module that realize the worm-like locomotion of the robot with a specifically designed driving mechanism for the straight motion of the robot along the pipeline. The proposed mechatronic system is easily adaptable to pipes of various sizes. Each module is equipped with a motor that actuates three slider-crank-based mechanisms. The central module incorporates a length-varying mechanism that allows forward and backward locomotion. The device is equipped with specific low-cost sensors that allow an operator to monitor the device and locate an obstruction in real time. The movement of the device can be automatic or controlled manually by using a specific user-friendly control board and a laptop. Preliminary laboratory tests are reported to demonstrate the engineering feasibility and effectiveness of the proposed design, which is currently under patenting.
2021
Detection
Pipe inspection
Robot
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 2
social impact