This paper addresses a novel nonlinear algorithm for the trajectory tracking of a planar cable-driven parallel robot. In particular, we outline a nonlinear continuous-time generalized predictive control (NCGPC). The proposed controller design is based on the finite horizon continuous-time minimization of a quadratic predicted cost function. The tracking error in the receding horizon is approximated using a Taylor-series expansion. The main advantage of the proposed NCGPC is based on using an analytic solution, which can be truncated to a desired degree of order of the Taylor-series. This allows us to achieve a prediction horizon of NCGPC tracking performance. The description of the proposed NCGPC method is followed by a comparison between NCGPC and a conventional computed torque control (CTC) method. Robustness tests are performed by considering payload and parameter uncertainties for both controllers. Simulation results of NCGPC compared to the commonly used CTC prove the effectiveness and advantages of the proposed approach.

A non-linear continuous-time generalized predictive control for a planar cable-driven parallel robot

Carbone G.
2021-01-01

Abstract

This paper addresses a novel nonlinear algorithm for the trajectory tracking of a planar cable-driven parallel robot. In particular, we outline a nonlinear continuous-time generalized predictive control (NCGPC). The proposed controller design is based on the finite horizon continuous-time minimization of a quadratic predicted cost function. The tracking error in the receding horizon is approximated using a Taylor-series expansion. The main advantage of the proposed NCGPC is based on using an analytic solution, which can be truncated to a desired degree of order of the Taylor-series. This allows us to achieve a prediction horizon of NCGPC tracking performance. The description of the proposed NCGPC method is followed by a comparison between NCGPC and a conventional computed torque control (CTC) method. Robustness tests are performed by considering payload and parameter uncertainties for both controllers. Simulation results of NCGPC compared to the commonly used CTC prove the effectiveness and advantages of the proposed approach.
2021
Continuous-time generalized predictive control
Control robustness
Nonlinear models
Planar cable-driven parallel robot
Tracking performance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact