This paper discusses the use of optimization algorithms to solve the problem of determining the workspace for a new robot for biological material aliquoting. The proposed robot is based on a parallel Delta-like kinematic architecture. A method for approximating the set of solutions to a system of nonlinear inequalities describing constraints on the geometric parameters of the robot is considered. Algorithms for constructing the workspace are synthesized. The workspace of the robot is obtained, considering the singularity zones of the robot, using a method based on the analysis of the Jacobian matrix of the mechanism. The analysis of changes in the volume of the workspace, considering the constancy of the determinant of the Jacobian matrix, depending on the options for solving the ambiguous inverse kinematics of the robot. The simulation results are presented.

Workspace and singularity zones analysis of a robotic system for biosamples aliquoting

Malyshev D.;Carbone G.;
2021-01-01

Abstract

This paper discusses the use of optimization algorithms to solve the problem of determining the workspace for a new robot for biological material aliquoting. The proposed robot is based on a parallel Delta-like kinematic architecture. A method for approximating the set of solutions to a system of nonlinear inequalities describing constraints on the geometric parameters of the robot is considered. Algorithms for constructing the workspace are synthesized. The workspace of the robot is obtained, considering the singularity zones of the robot, using a method based on the analysis of the Jacobian matrix of the mechanism. The analysis of changes in the volume of the workspace, considering the constancy of the determinant of the Jacobian matrix, depending on the options for solving the ambiguous inverse kinematics of the robot. The simulation results are presented.
2021
978-3-030-75258-3
978-3-030-75259-0
Approximation set
Non-uniform covering
Optimization
Parallel robot
Singularity zones
Workspace
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327230
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact