The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a method to evaluate exactly the spectral function for a gas of one-dimensional bosons with infinitely strong repulsions valid for any type of external confinement. Focusing on the case of a lattice confinement, we find that the spectral function displays three main singularity lines. One of them is due uniquely to lattice effects, while the two others correspond to the Lieb-I and Lieb-II modes occurring in a uniform fluid. Differently from the dynamical structure factor, in the spectral function the Lieb-II mode shows a divergence, thus providing a route to probe such mode in experiments with ultracold atoms.
Exact Spectral Function of a Tonks-Girardeau Gas in a Lattice
Settino J.
Methodology
;Lo Gullo N.Conceptualization
;Plastina F.Supervision
;
2021-01-01
Abstract
The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a method to evaluate exactly the spectral function for a gas of one-dimensional bosons with infinitely strong repulsions valid for any type of external confinement. Focusing on the case of a lattice confinement, we find that the spectral function displays three main singularity lines. One of them is due uniquely to lattice effects, while the two others correspond to the Lieb-I and Lieb-II modes occurring in a uniform fluid. Differently from the dynamical structure factor, in the spectral function the Lieb-II mode shows a divergence, thus providing a route to probe such mode in experiments with ultracold atoms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.