As one of the most promising technologies for next-generation mobile platforms, Augmented Reality (AR) has the potential to radically change the way users interact with real environments enriched with various digital information. To achieve this potential, it is of fundamental importance to track and maintain accurate registration between real and computer-generated objects. Thus, it is crucially important to assess tracking capabilities. In this paper, we present a benchmark evaluation of the tracking performances of some of the most popular AR handheld devices, which can be regarded as a representative set of devices for sale in the global market. In particular, eight different next-gen devices including smartphones and tablets were considered. Experiments were conducted in a laboratory by adopting an external tracking system. The experimental methodology consisted of three main stages: calibration, data acquisition, and data evaluation. The results of the experimentation showed that the selected devices, in combination with the AR SDKs, have different tracking performances depending on the covered trajectory.

Benchmarking Built-In Tracking Systems for Indoor AR Applications on Popular Mobile Devices

Marino E.
;
Bruno F.;Barbieri L.;Lagudi A.
2022-01-01

Abstract

As one of the most promising technologies for next-generation mobile platforms, Augmented Reality (AR) has the potential to radically change the way users interact with real environments enriched with various digital information. To achieve this potential, it is of fundamental importance to track and maintain accurate registration between real and computer-generated objects. Thus, it is crucially important to assess tracking capabilities. In this paper, we present a benchmark evaluation of the tracking performances of some of the most popular AR handheld devices, which can be regarded as a representative set of devices for sale in the global market. In particular, eight different next-gen devices including smartphones and tablets were considered. Experiments were conducted in a laboratory by adopting an external tracking system. The experimental methodology consisted of three main stages: calibration, data acquisition, and data evaluation. The results of the experimentation showed that the selected devices, in combination with the AR SDKs, have different tracking performances depending on the covered trajectory.
2022
Apple ARKit
benchmarking
Google ARCore
mobile augmented reality
simultaneous localization and mapping (SLAM)
tracking accuracy
Calibration
Computers, Handheld
Augmented Reality
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/336643
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact