The synthesis of high-silica BEA zeolite has attracted great attention from the zeolite scientific community, and several approaches have been proposed for the preparation of crystalline materials with a very low aluminum content. In this work, high-silica crystalline BEA zeolites were prepared starting from an Al-free synthesis gel, by using boron and iron as trivalent atoms. A Si/Fe molar ratio equal to 100, 200 or infinity was adopted, and crystallization was successful in the presence of tetraethy- lammonium (TEA+), with a low Si/B starting synthesis gel molar ratio, i.e. 8 or 12, and with a hydrothermal synthesis time of 6 days maximum at 150 degrees C. The Si/Fe ratio affects TEA+-zeolite interactions, crystallographic patterns, and surface acidity. In particular, the proposed synthesis procedure allowed obtaining BEA zeolites with a very low acidity, with a tunable Lewis/Bronsted acids site distribution. Liquid-phase etherification of 5- hydroxymethyl furfural (HMF) with ethanol highlighted the suitability of the obtained materials for the production of 5- (ethoxymethyl)furan-2-carbaldeyde (EMF), a green fuel additive. Particularly, a high EMF selectivity (>97%) was obtained in the presence of both iron and boron. As the main outcome, the presented results indicated that high-silica BEA zeolite can be easily obtained starting from a low Si/B ratio in the synthesis gel, with conventional tetraethylammonium as a template, and iron can be also incorporated for catalytic purposes.

Hydrothermal Synthesis and Catalytic Assessment of High-Silica (B,Fe)-beta Zeolites

Marino, A;Catizzone, E
;
Migliori, M;Ferrarelli, G;Perathoner, S;Giordano, G
2023-01-01

Abstract

The synthesis of high-silica BEA zeolite has attracted great attention from the zeolite scientific community, and several approaches have been proposed for the preparation of crystalline materials with a very low aluminum content. In this work, high-silica crystalline BEA zeolites were prepared starting from an Al-free synthesis gel, by using boron and iron as trivalent atoms. A Si/Fe molar ratio equal to 100, 200 or infinity was adopted, and crystallization was successful in the presence of tetraethy- lammonium (TEA+), with a low Si/B starting synthesis gel molar ratio, i.e. 8 or 12, and with a hydrothermal synthesis time of 6 days maximum at 150 degrees C. The Si/Fe ratio affects TEA+-zeolite interactions, crystallographic patterns, and surface acidity. In particular, the proposed synthesis procedure allowed obtaining BEA zeolites with a very low acidity, with a tunable Lewis/Bronsted acids site distribution. Liquid-phase etherification of 5- hydroxymethyl furfural (HMF) with ethanol highlighted the suitability of the obtained materials for the production of 5- (ethoxymethyl)furan-2-carbaldeyde (EMF), a green fuel additive. Particularly, a high EMF selectivity (>97%) was obtained in the presence of both iron and boron. As the main outcome, the presented results indicated that high-silica BEA zeolite can be easily obtained starting from a low Si/B ratio in the synthesis gel, with conventional tetraethylammonium as a template, and iron can be also incorporated for catalytic purposes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/348136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact