We give a complete answer to the local–global divisibility problem for algebraic tori. In particular, we prove that given an odd prime 𝑝, if 𝑇 is an algebraic torus of dimension 𝑟<𝑝−1 defined over a number field 𝑘, then the local–global divisibility by any power 𝑝𝑛 holds for 𝑇(𝑘). We also show that this bound on the dimension is best possible, by providing a counterexample for every dimension 𝑟 ⩾ 𝑝−1. Finally, we prove that under certain hypotheses on the number field generated by the coordinates of the 𝑝𝑛-torsion points of 𝑇, the local– global divisibility still holds for tori of dimension less than 3(𝑝 − 1).

Local-global divisibility on algebraic tori

Laura Paladino
2024-01-01

Abstract

We give a complete answer to the local–global divisibility problem for algebraic tori. In particular, we prove that given an odd prime 𝑝, if 𝑇 is an algebraic torus of dimension 𝑟<𝑝−1 defined over a number field 𝑘, then the local–global divisibility by any power 𝑝𝑛 holds for 𝑇(𝑘). We also show that this bound on the dimension is best possible, by providing a counterexample for every dimension 𝑟 ⩾ 𝑝−1. Finally, we prove that under certain hypotheses on the number field generated by the coordinates of the 𝑝𝑛-torsion points of 𝑇, the local– global divisibility still holds for tori of dimension less than 3(𝑝 − 1).
2024
Local-global divisibility; algebraic tori; cohomology of groups
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/348457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact