In recent years, there has been an increase in the use of edge-cloud continuum solutions to efficiently collect and analyze data generated by IoT devices. In this paper, we investigate to what extent these solutions can manage tasks related to urban mobility, by combining real-time and low latency analysis offered by the edge with large computing and storage resources provided by the cloud. Our proposal is organized into three parts. The first part focuses on defining three application scenarios in which geotagged data generated by IoT objects, such as taxis, cars, and smartphones, are collected and analyzed through machine learning-based algorithms (i.e., next location prediction, location-based advertising, and points of interest recommendation). The second part is dedicated to modeling an edge-cloud continuum architecture capable of managing a large number of IoT devices and executing machine learning algorithms to analyze the data they generate. The third part analyzes the experimental results in which different design choices were evaluated, such as the number of devices and orchestration policies, to improve the performance of machine learning algorithms in terms of processing time, network delay, task failure, and computational resource utilization. The results highlight the potential benefits of edge and cloud cooperation in the three application scenarios, demonstrating that it significantly improves resource utilization and reduces the task failure rate compared to other widely adopted architectures, such as edge- or cloud-only architectures.

Edge-Cloud Continuum Solutions for Urban Mobility Prediction and Planning

Belcastro Loris;Marozzo Fabrizio
;
Orsino Alessio;Talia Domenico;Trunfio Paolo
2023-01-01

Abstract

In recent years, there has been an increase in the use of edge-cloud continuum solutions to efficiently collect and analyze data generated by IoT devices. In this paper, we investigate to what extent these solutions can manage tasks related to urban mobility, by combining real-time and low latency analysis offered by the edge with large computing and storage resources provided by the cloud. Our proposal is organized into three parts. The first part focuses on defining three application scenarios in which geotagged data generated by IoT objects, such as taxis, cars, and smartphones, are collected and analyzed through machine learning-based algorithms (i.e., next location prediction, location-based advertising, and points of interest recommendation). The second part is dedicated to modeling an edge-cloud continuum architecture capable of managing a large number of IoT devices and executing machine learning algorithms to analyze the data they generate. The third part analyzes the experimental results in which different design choices were evaluated, such as the number of devices and orchestration policies, to improve the performance of machine learning algorithms in terms of processing time, network delay, task failure, and computational resource utilization. The results highlight the potential benefits of edge and cloud cooperation in the three application scenarios, demonstrating that it significantly improves resource utilization and reduces the task failure rate compared to other widely adopted architectures, such as edge- or cloud-only architectures.
2023
Edge-cloud architecture, IoT infrastructure, edge computing, urban computing, smart cities, urban mobility
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/349477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 9
social impact