The use of polymers in the transportation industry represents a great opportunity to meet the growing demand for lightweight structures and to reduce polluting emissions. In this context, additive manufacturing represents a very effective fabrication route for mechanical components with sophisticated geometry that cannot be pursued by conventional methods. However, understanding the mechanical properties of 3D-printed polymers plays a crucial role in the performance and durability of polymer-based products. Polyamide is a commonly used material in 3D printing because of its excellent mechanical properties. However, the layer-by-layer deposition process and ensuing auxiliary steps (e.g., post-processing heating) may affect the microstructure and mechanical properties of 3D-printed nylon with respect to the bulk counterpart. In this work, we explore the effect of displacement rate and heat exposure on the mechanical properties of 3D-printed polyamide (PA12) specimens obtained by selective laser sintering (SLS). Moreover, the thermal characteristics of the powders and sintered material were evaluated using differential scanning calorimetry (DSC). Our results highlight the expected rate dependency of mechanical properties and show that a post-processing heat treatment partly affects mechanical behavior.

Effect of Strain Rates and Heat Exposure on Polyamide (PA12) Processed via Selective Laser Sintering

Chiara Morano;Marco Alfano;Leonardo Pagnotta
2023-01-01

Abstract

The use of polymers in the transportation industry represents a great opportunity to meet the growing demand for lightweight structures and to reduce polluting emissions. In this context, additive manufacturing represents a very effective fabrication route for mechanical components with sophisticated geometry that cannot be pursued by conventional methods. However, understanding the mechanical properties of 3D-printed polymers plays a crucial role in the performance and durability of polymer-based products. Polyamide is a commonly used material in 3D printing because of its excellent mechanical properties. However, the layer-by-layer deposition process and ensuing auxiliary steps (e.g., post-processing heating) may affect the microstructure and mechanical properties of 3D-printed nylon with respect to the bulk counterpart. In this work, we explore the effect of displacement rate and heat exposure on the mechanical properties of 3D-printed polyamide (PA12) specimens obtained by selective laser sintering (SLS). Moreover, the thermal characteristics of the powders and sintered material were evaluated using differential scanning calorimetry (DSC). Our results highlight the expected rate dependency of mechanical properties and show that a post-processing heat treatment partly affects mechanical behavior.
2023
3D printing
mechanical properties
nylon
polyamides
strength
thermal properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/355837
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact