As the demand for structural light-weighting continues to rise, so does the interest in bonding with structural adhesives. However, adhesive joints are subjected to the nucleation and growth of cracks, and there is a growing need for toughening strategies that can prevent catastrophic failures. This work focuses on secondary bonded composite/metal joints and explores a toughening approach enabled by a snap-through cracking process. A composite flat panel is bonded with a corrugated aluminum substrate with a square-wave profile, whose geometry is defined by grooves' spacing, depth, and width. These key geometrical parameters provide opportunities to tailor the mechanics of crack growth and were chosen by resorting to finite element simulations with cohesive elements. The computational results are validated by experiments that systematically show the occurrence of snap-through cracking and a significant enhancement of load bearing capacity and dissipated energy (up to 260%) compared to adhesive joints without corrugation.

Toughening effect in adhesive joints comprising a CFRP laminate and a corrugated lightweight aluminum alloy

Morano, C;Alfano, M
;
2022-01-01

Abstract

As the demand for structural light-weighting continues to rise, so does the interest in bonding with structural adhesives. However, adhesive joints are subjected to the nucleation and growth of cracks, and there is a growing need for toughening strategies that can prevent catastrophic failures. This work focuses on secondary bonded composite/metal joints and explores a toughening approach enabled by a snap-through cracking process. A composite flat panel is bonded with a corrugated aluminum substrate with a square-wave profile, whose geometry is defined by grooves' spacing, depth, and width. These key geometrical parameters provide opportunities to tailor the mechanics of crack growth and were chosen by resorting to finite element simulations with cohesive elements. The computational results are validated by experiments that systematically show the occurrence of snap-through cracking and a significant enhancement of load bearing capacity and dissipated energy (up to 260%) compared to adhesive joints without corrugation.
2022
Adhesive joints
CFRP
Cohesive zone models
Toughening
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/360469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact