Over the years, attention to climate change has meant that international agreements have been drawn up and increasingly stringent regulations aimed at reducing the environmental impact of the marine sector have been issued. A possible alternative technology to the conventional and polluting diesel internal combustion engines is represented by the Fuel Cells. In the present article, the preliminary design of two energy systems based on Solid Oxide Fuel Cells (SOFCs) fed by bio-methane was carried out for a particular cruise ship. The SOFC systems were sized to separately supply the electric energies required for the ship propulsion and to power the other ship electrical utilities. The SOFC systems operate in nominal conditions at constant load and other electrical storage systems (batteries) cover the fluctuations in the electrical energy demand. Furthermore, the heat produced by the SOFCs is exploited for co-/tri-generation purposes, to satisfy the ship thermal energy needs. The preliminary design of the new energy systems was made using electronic spreadsheets. The new energy system has obtained the primary energy consumption and CO2 emissions reductions of 12.74% and 40.23% compared to the conventional energy system. Furthermore, if bio-methane is used, a reduction of 95.50% could be obtained in net CO2 emissions.

Preliminary Design of the Fuel Cells Based Energy Systems for a Cruise Ship

Giuseppe De Lorenzo
;
Petronilla Fragiacomo
2023-01-01

Abstract

Over the years, attention to climate change has meant that international agreements have been drawn up and increasingly stringent regulations aimed at reducing the environmental impact of the marine sector have been issued. A possible alternative technology to the conventional and polluting diesel internal combustion engines is represented by the Fuel Cells. In the present article, the preliminary design of two energy systems based on Solid Oxide Fuel Cells (SOFCs) fed by bio-methane was carried out for a particular cruise ship. The SOFC systems were sized to separately supply the electric energies required for the ship propulsion and to power the other ship electrical utilities. The SOFC systems operate in nominal conditions at constant load and other electrical storage systems (batteries) cover the fluctuations in the electrical energy demand. Furthermore, the heat produced by the SOFCs is exploited for co-/tri-generation purposes, to satisfy the ship thermal energy needs. The preliminary design of the new energy systems was made using electronic spreadsheets. The new energy system has obtained the primary energy consumption and CO2 emissions reductions of 12.74% and 40.23% compared to the conventional energy system. Furthermore, if bio-methane is used, a reduction of 95.50% could be obtained in net CO2 emissions.
2023
fuel cell based cruise ship; preliminary design; SOFC based powertrain; SOFC based auxiliary systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/363957
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact