We obtain some regularity results for solutions to vectorial p-Laplace equations-Delta(p)u = -div (vertical bar Du vertical bar(p-2) Du) = f (x, u ) in Omega.More precisely we address the issue of second order estimates for the stress field. As a consequence of our regularity results we deduce a weighted Sobolev inequality that leads to weak comparison principles. As a corollary we run over the moving plane technique to deduce symmetry and monotonicity results for the solutions, under suitable assumptions.

Regularity and symmetry results for the vectorial p-Laplacian

Montoro L.;Muglia L.;Sciunzi B.
;
Vuono D.
2025-01-01

Abstract

We obtain some regularity results for solutions to vectorial p-Laplace equations-Delta(p)u = -div (vertical bar Du vertical bar(p-2) Du) = f (x, u ) in Omega.More precisely we address the issue of second order estimates for the stress field. As a consequence of our regularity results we deduce a weighted Sobolev inequality that leads to weak comparison principles. As a corollary we run over the moving plane technique to deduce symmetry and monotonicity results for the solutions, under suitable assumptions.
2025
p-Laplacian system
Regularity results
Symmetry results
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/377698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact