This paper focuses on a comprehensive study of a four-axle vehicle, including dynamics analysis, equivalent modeling methods, and their comparison. Firstly, a linear two-degree lateral dynamic model is established, which has four drive axles and two steer axles. Secondly, the mathematical transfer function expressions for the yaw rate and the centroid sideslip angle were derived on the basis of the model. The steady-state parameters, such as yaw rate gain Gγss, centroid sideslip angle gain Gβss, stability factor Kn, equivalent axial distance ln, and equivalent centroid sideslip angle coefficient Kn’ were obtained by using the transfer functions. Then, the steady-state and transient characteristics are roundly discussed, including steady-state parameters, system root trajectory, frequency domain, and time domain. Some recommendations for the four-axle vehicle’s parameter design are also given. Finally, for a more simple and efficient analysis of response characteristics of four-axle vehicles and even n (n > 4) axle vehicles, the equivalent model is developed for the four-axle vehicle, and comprehensive analyses are presented with four equalization methods, which are based on the inner heart of the approximation triangle, the outer heart of the approximation triangle, the center of gravity of the approximation triangle and the compensation point. Following a thorough analysis of the four, it is determined that the inner approximation triangle solution approach is most suited for four-axle vehicles.

Dynamic Analysis and Equivalent Modeling for a Four-Axle Vehicle

Carbone G.;
2024-01-01

Abstract

This paper focuses on a comprehensive study of a four-axle vehicle, including dynamics analysis, equivalent modeling methods, and their comparison. Firstly, a linear two-degree lateral dynamic model is established, which has four drive axles and two steer axles. Secondly, the mathematical transfer function expressions for the yaw rate and the centroid sideslip angle were derived on the basis of the model. The steady-state parameters, such as yaw rate gain Gγss, centroid sideslip angle gain Gβss, stability factor Kn, equivalent axial distance ln, and equivalent centroid sideslip angle coefficient Kn’ were obtained by using the transfer functions. Then, the steady-state and transient characteristics are roundly discussed, including steady-state parameters, system root trajectory, frequency domain, and time domain. Some recommendations for the four-axle vehicle’s parameter design are also given. Finally, for a more simple and efficient analysis of response characteristics of four-axle vehicles and even n (n > 4) axle vehicles, the equivalent model is developed for the four-axle vehicle, and comprehensive analyses are presented with four equalization methods, which are based on the inner heart of the approximation triangle, the outer heart of the approximation triangle, the center of gravity of the approximation triangle and the compensation point. Following a thorough analysis of the four, it is determined that the inner approximation triangle solution approach is most suited for four-axle vehicles.
2024
dynamic analysis
equivalent modeling
four-axle vehicles
the steady-state and transient characteristics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380257
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact