The development of AI applications, especially in large-scale wireless networks, is growing exponentially, alongside the size and complexity of the architectures used. Particularly, machine learning is acknowledged as one of today’s most energy-intensive computational applications, posing a significant challenge to the environmental sustainability of next-generation intelligent systems. Achieving environmental sustainability entails ensuring that every AI algorithm is designed with sustainability in mind, integrating green considerations from the architectural phase onwards. Recently, Federated Learning (FL), with its distributed nature, presents new opportunities to address this need. Hence, it’s imperative to elucidate the potential and challenges stemming from recent FL advancements and their implications for sustainability. Moreover, it’s crucial to furnish researchers, stakeholders, and interested parties with a roadmap to navigate and understand existing efforts and gaps in green-aware AI algorithms. This survey primarily aims to achieve this objective by identifying and analyzing over a hundred FL works and assessing their contributions to green-aware artificial intelligence for sustainable environments, with a specific focus on IoT research. It delves into current issues in green federated learning from an energy-efficient standpoint, discussing potential challenges and future prospects for green IoT application research.

Green Federated Learning: A New Era of Green Aware AI

Thakur, Dipanwita
Writing – Original Draft Preparation
;
Guzzo, Antonella;Fortino, Giancarlo;
2025-01-01

Abstract

The development of AI applications, especially in large-scale wireless networks, is growing exponentially, alongside the size and complexity of the architectures used. Particularly, machine learning is acknowledged as one of today’s most energy-intensive computational applications, posing a significant challenge to the environmental sustainability of next-generation intelligent systems. Achieving environmental sustainability entails ensuring that every AI algorithm is designed with sustainability in mind, integrating green considerations from the architectural phase onwards. Recently, Federated Learning (FL), with its distributed nature, presents new opportunities to address this need. Hence, it’s imperative to elucidate the potential and challenges stemming from recent FL advancements and their implications for sustainability. Moreover, it’s crucial to furnish researchers, stakeholders, and interested parties with a roadmap to navigate and understand existing efforts and gaps in green-aware AI algorithms. This survey primarily aims to achieve this objective by identifying and analyzing over a hundred FL works and assessing their contributions to green-aware artificial intelligence for sustainable environments, with a specific focus on IoT research. It delves into current issues in green federated learning from an energy-efficient standpoint, discussing potential challenges and future prospects for green IoT application research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/381837
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact