The continuous growth of STEM (Science, Technology, Engineering and Mathematics) education has set intense pressure on well-established engineering subjects, with a trend of replacing them with less demanding theoretical contents. This paper describes a recent activity with bachelor students to stimulate STEM education via a Robot-Sumo Competition. Students are grouped in teams to design, build and program their robot sumo robots. This course was implemented for the first time at University of Calabria (UNICAL). As a first attempt has been made with six teams each made of six students. Some seminars are delivered to the students to let them understand the assignment and its basic requirements. Then, they are expected to start developing a concept design and competition strategy. Then, they work on a 3D CAD modelling to design their own robot, whose main components will be later 3D printed and assembled. In parallel, the team selects the required sensors and electronic components as based on an Arduino architecture. The robots are completed and programmed for the competition where teams fight to find the most competitive solutions. The competition proves to be highly effective to learn multiple skills with a very practical and stimulating approach.

A Robot-Sumo student competition at UNICAL as a learning-by-doing strategy for STEM education

Carbone, Giuseppe;Curcio, Elio Matteo;Rodinò, Stefano;Lago, Francesco
2022-01-01

Abstract

The continuous growth of STEM (Science, Technology, Engineering and Mathematics) education has set intense pressure on well-established engineering subjects, with a trend of replacing them with less demanding theoretical contents. This paper describes a recent activity with bachelor students to stimulate STEM education via a Robot-Sumo Competition. Students are grouped in teams to design, build and program their robot sumo robots. This course was implemented for the first time at University of Calabria (UNICAL). As a first attempt has been made with six teams each made of six students. Some seminars are delivered to the students to let them understand the assignment and its basic requirements. Then, they are expected to start developing a concept design and competition strategy. Then, they work on a 3D CAD modelling to design their own robot, whose main components will be later 3D printed and assembled. In parallel, the team selects the required sensors and electronic components as based on an Arduino architecture. The robots are completed and programmed for the competition where teams fight to find the most competitive solutions. The competition proves to be highly effective to learn multiple skills with a very practical and stimulating approach.
2022
learning-by-doing
robot competitions
teaching strategies
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/390805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact