In this paper, the analog/mixed-signal performance is evaluated at device and circuit levels for a III-V nanowire tunnel field effect transistor (TFET) technology platform and compared against the predictive model for FinFETs at the 10-nm technology node. The advantages and limits of TFETs over their FinFET counterparts are discussed in detail, considering the main analog figures of merits, as well as the implementation of low-voltage track-and-hold (T/H) and comparator circuits. It is found that the higher output resistance offered by TFET-based designs allows achieving significantly higher intrinsic voltage gain and higher maximum-oscillation frequency at low current levels. TFET-based T/H circuits have better accuracy and better hold performance by using the dummy switch solution for the mitigation of the charge injection. Among the comparator circuits, the TFET-based conventional dynamic architecture exhibits the best performance while keeping lower area occupation with respect to the more complex double-tail circuits. Moreover, it outperforms all the FinFET counterparts over a wide range of supply voltage when considering low values of the common-mode voltage.
Understanding the Potential and Limitations of Tunnel FETs for Low-Voltage Analog/Mixed-Signal Circuits
LANUZZA, Marco
;CRUPI, Felice;
2017-01-01
Abstract
In this paper, the analog/mixed-signal performance is evaluated at device and circuit levels for a III-V nanowire tunnel field effect transistor (TFET) technology platform and compared against the predictive model for FinFETs at the 10-nm technology node. The advantages and limits of TFETs over their FinFET counterparts are discussed in detail, considering the main analog figures of merits, as well as the implementation of low-voltage track-and-hold (T/H) and comparator circuits. It is found that the higher output resistance offered by TFET-based designs allows achieving significantly higher intrinsic voltage gain and higher maximum-oscillation frequency at low current levels. TFET-based T/H circuits have better accuracy and better hold performance by using the dummy switch solution for the mitigation of the charge injection. Among the comparator circuits, the TFET-based conventional dynamic architecture exhibits the best performance while keeping lower area occupation with respect to the more complex double-tail circuits. Moreover, it outperforms all the FinFET counterparts over a wide range of supply voltage when considering low values of the common-mode voltage.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.