This work compares the performance of the basic current mirror topology by using two different materials for gate dielectrics, the conventional SiON and an Hf-based high-k dielectrics. The impact of gate leakage and of channel length modulation on the basic current mirror operation is described. It is shown that in the case of SiON gate dielectrics with an equivalent oxide thickness (EOT) of 1.4 nm, it is not possible to find a value for the channel length which allows a good trade-off to be obtained while minimizing the gate leakage and reducing the channel length modulation. On the other hand, the study demonstrates that in the case of HfSiON gate dielectrics with similar EOT, appropriate L values can be found obtaining very high output impedance current sources with reduced power consumption owing to low leakage and most of all with better parameter predictability. (c) 2007 Published by Elsevier B.V.

This work compares the performance of the basic current mirror topology by using two different materials for gate dielectrics, the conventional SiON and an Hf-based high-k dielectrics. The impact of gate leakage and of channel length modulation on the basic current mirror operation is described. It is shown that in the case of SiON gate dielectrics with an equivalent oxide thickness (EOT) of 1.4 nm, it is not possible to find a value for the channel length which allows a good trade-off to be obtained while minimizing the gate leakage and reducing the channel length modulation. On the other hand, the study demonstrates that in the case of HfSiON gate dielectrics with similar EOT, appropriate L values can be found obtaining very high output impedance current sources with reduced power consumption owing to low leakage and most of all with better parameter predictability. (c) 2007 Published by Elsevier B.V.

Performance of current mirror with high-k gate dielectrics

CRUPI, Felice;CAPPUCCINO, Gregorio
2008-01-01

Abstract

This work compares the performance of the basic current mirror topology by using two different materials for gate dielectrics, the conventional SiON and an Hf-based high-k dielectrics. The impact of gate leakage and of channel length modulation on the basic current mirror operation is described. It is shown that in the case of SiON gate dielectrics with an equivalent oxide thickness (EOT) of 1.4 nm, it is not possible to find a value for the channel length which allows a good trade-off to be obtained while minimizing the gate leakage and reducing the channel length modulation. On the other hand, the study demonstrates that in the case of HfSiON gate dielectrics with similar EOT, appropriate L values can be found obtaining very high output impedance current sources with reduced power consumption owing to low leakage and most of all with better parameter predictability. (c) 2007 Published by Elsevier B.V.
2008
This work compares the performance of the basic current mirror topology by using two different materials for gate dielectrics, the conventional SiON and an Hf-based high-k dielectrics. The impact of gate leakage and of channel length modulation on the basic current mirror operation is described. It is shown that in the case of SiON gate dielectrics with an equivalent oxide thickness (EOT) of 1.4 nm, it is not possible to find a value for the channel length which allows a good trade-off to be obtained while minimizing the gate leakage and reducing the channel length modulation. On the other hand, the study demonstrates that in the case of HfSiON gate dielectrics with similar EOT, appropriate L values can be found obtaining very high output impedance current sources with reduced power consumption owing to low leakage and most of all with better parameter predictability. (c) 2007 Published by Elsevier B.V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/140801
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact