Background: Polymeric gels, an important class of soft matter systems, are widely used for commercial applications particularly in food products (i.e., saturated fat replacement). The efficiency of the product for a particular application can be directly linked to its rheological signature. However, the rheological imprint of these structured systems is significantly dependent on the interactions between their individual components. Therefore, the rational understanding of interacting components, their structural arrangements and the resultant characteristics of a hybrid system is vital, in order to speed-up our progress in recognizing the suitable combination of gelling agents and also to tune the technological and functional properties of final product. Scope and approach: The main aim of this narrative review article is to look at the synergistic interactions (i.e., interpenetrating polymer structures) between different components of the hybrid systems (i.e., multi-component organogels or bigels), in order to unveil the resultant rheological characteristics for different commercial applications including food systems. However, multi-component hydrogel systems have not been discussed in this review. Key findings and conclusions: The existence of synergistic interactions between different gelators in multi-component organogels (i.e., higher values of hardness and moduli (G'and G'') of multi-component organogel than the corresponding mono-component system) is clearly evident from the literature. This synergy also helps in optimizing the rheological signature of final system by exploiting the concept of formulation engineering. However, this exciting concept of synergistic enhancement in properties has not yet been explored in the field of bigels. The incorporation of colloidal particles in the gelled system resulted in increased stability and higher moduli values, as compared to the gels without particles. This exciting approach can also be quite useful for designing food products by exploiting the useful properties of gelators and (nano)particles, in a single system.

Bigels and multi-component organogels: An overview from rheological perspective

Gabriele D.;Lupi F. R.
2021-01-01

Abstract

Background: Polymeric gels, an important class of soft matter systems, are widely used for commercial applications particularly in food products (i.e., saturated fat replacement). The efficiency of the product for a particular application can be directly linked to its rheological signature. However, the rheological imprint of these structured systems is significantly dependent on the interactions between their individual components. Therefore, the rational understanding of interacting components, their structural arrangements and the resultant characteristics of a hybrid system is vital, in order to speed-up our progress in recognizing the suitable combination of gelling agents and also to tune the technological and functional properties of final product. Scope and approach: The main aim of this narrative review article is to look at the synergistic interactions (i.e., interpenetrating polymer structures) between different components of the hybrid systems (i.e., multi-component organogels or bigels), in order to unveil the resultant rheological characteristics for different commercial applications including food systems. However, multi-component hydrogel systems have not been discussed in this review. Key findings and conclusions: The existence of synergistic interactions between different gelators in multi-component organogels (i.e., higher values of hardness and moduli (G'and G'') of multi-component organogel than the corresponding mono-component system) is clearly evident from the literature. This synergy also helps in optimizing the rheological signature of final system by exploiting the concept of formulation engineering. However, this exciting concept of synergistic enhancement in properties has not yet been explored in the field of bigels. The incorporation of colloidal particles in the gelled system resulted in increased stability and higher moduli values, as compared to the gels without particles. This exciting approach can also be quite useful for designing food products by exploiting the useful properties of gelators and (nano)particles, in a single system.
2021
Bigels
Food systems
Multi-component
Organogels
Rheology
Synergistic interactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/307105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 97
social impact