A. baumannii is one of the most important multidrug-resistant microorganisms in hospital units. It is resistant to many classes of antibiotics and the development of new therapeutic strategies is necessary. The aim of this study was to evaluate the antibacterial activity of a set of piperazine-derived thioureas against 13 clinical strains of colistin-resistant A. baumannii. Six derivatives were identified to inhibit bacterial growth of 46% of the A. baumannii strains at low micromolar concentrations (Minimum Inhibitory Concentration from 1.56 to 6.25 μM). A common structural feature in most active compounds was the presence of a 3,5-bis-trifluoromethyl phenyl ring at the thiourea function. In addition, the ability of the compounds to inhibit production of nitric oxide (NO) was examined in RAW 264.7 murine macrophages, highlighting the potential of piperazine-derived thioureas as promising scaffolds for the design of new combined anti-bacterial/anti-inflammatory agents.

Exploration of piperazine-derived thioureas as antibacterial and anti-inflammatory agents. In vitro evaluation against clinical isolates of colistin-resistant Acinetobacter baumannii

Mazzotta S.;Frattaruolo L.;Cappello A. R.;Aiello F.;
2020-01-01

Abstract

A. baumannii is one of the most important multidrug-resistant microorganisms in hospital units. It is resistant to many classes of antibiotics and the development of new therapeutic strategies is necessary. The aim of this study was to evaluate the antibacterial activity of a set of piperazine-derived thioureas against 13 clinical strains of colistin-resistant A. baumannii. Six derivatives were identified to inhibit bacterial growth of 46% of the A. baumannii strains at low micromolar concentrations (Minimum Inhibitory Concentration from 1.56 to 6.25 μM). A common structural feature in most active compounds was the presence of a 3,5-bis-trifluoromethyl phenyl ring at the thiourea function. In addition, the ability of the compounds to inhibit production of nitric oxide (NO) was examined in RAW 264.7 murine macrophages, highlighting the potential of piperazine-derived thioureas as promising scaffolds for the design of new combined anti-bacterial/anti-inflammatory agents.
2020
Acinetobacter baumannii
Anti-inflammatory
Antibacterial agents
Multidrug-resistant
Piperazine thiourea derivatives
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/307741
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact