Associative access is widely used in fundamental microarchitectural components, such as caches and TLBs. However, associative (or content addressable) memories (CAMs) have been traditionally considered too large, too energy-hungry, and not scalable, and therefore, have limited use in modern computer microarchitecture. This work revisits these presumptions and proposes an energy-efficient fully-associative tag array (FASTA) architecture, based on a novel complementary CAM (CCAM) bitcell. CCAM offers a full CMOS solution for CAM, removing the need for time- and energy-consuming precharge and combining the speed of NOR CAM and low energy consumption of NAND CAM. While providing better performance and energy consumption, CCAM features a larger area compared to state-of-the-art CAM designs. We further show how FASTA can be used to construct a novel aliasing-free, energy-efficient, Very-Many-Way Associative (VMWA) cache. Circuit-level simulations using 16nm FinFET technology show that a 128 kB FASTA-based 256-way 8-set associative cache is 28% faster and consumes 88% less energy-per-access than a same sized 8-way (256-set) SRAM based cache, while also providing aliasing-free operation. System-level evaluation performed on the Sniper simulator shows that the VMWA cache exhibits lower Misses Per Kilo Instructions (MPKI) for the majority of benchmarks. Specifically, the 256-way associative cache achieves 17.3%, 11.5%, and 1.2% lower average MPKI for L1, L2, and L3 caches, respectively, compared to a 16-way associative cache. The average IPC improvement for L1, L2, and L3 caches are 1.6%, 1.4%, and 0.2%, respectively.

FASTA: Revisiting Fully Associative Memories in Computer Microarchitecture

Garzon E.
;
Lanuzza M.;
2024-01-01

Abstract

Associative access is widely used in fundamental microarchitectural components, such as caches and TLBs. However, associative (or content addressable) memories (CAMs) have been traditionally considered too large, too energy-hungry, and not scalable, and therefore, have limited use in modern computer microarchitecture. This work revisits these presumptions and proposes an energy-efficient fully-associative tag array (FASTA) architecture, based on a novel complementary CAM (CCAM) bitcell. CCAM offers a full CMOS solution for CAM, removing the need for time- and energy-consuming precharge and combining the speed of NOR CAM and low energy consumption of NAND CAM. While providing better performance and energy consumption, CCAM features a larger area compared to state-of-the-art CAM designs. We further show how FASTA can be used to construct a novel aliasing-free, energy-efficient, Very-Many-Way Associative (VMWA) cache. Circuit-level simulations using 16nm FinFET technology show that a 128 kB FASTA-based 256-way 8-set associative cache is 28% faster and consumes 88% less energy-per-access than a same sized 8-way (256-set) SRAM based cache, while also providing aliasing-free operation. System-level evaluation performed on the Sniper simulator shows that the VMWA cache exhibits lower Misses Per Kilo Instructions (MPKI) for the majority of benchmarks. Specifically, the 256-way associative cache achieves 17.3%, 11.5%, and 1.2% lower average MPKI for L1, L2, and L3 caches, respectively, compared to a 16-way associative cache. The average IPC improvement for L1, L2, and L3 caches are 1.6%, 1.4%, and 0.2%, respectively.
2024
256-way associative cache
aliasing
associative memory
Associative memory
cache
CAM
CNTFETs
Computer architecture
content addressable memory
FeFETs
Fully associative
memory architecture
Microarchitecture
Microprocessors
Random access memory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/362903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact