This article addresses the problem of event-based consensus in a leader-follower multiagent system framework prone to external bounded disturbance. The proposed approach has three parts. The first part defines a novel measurement error based on sliding surface for super-twisting sliding-mode controller. The Lyapunov stability analysis is then used to derive a dynamic event-triggering condition for control updates. The event-based control updates guarantee stability along with the desired consensus amongst agents (robots). The second part derives a bound on reaching time to the sliding surface, thereby guaranteeing finite-time consensus control for each agent. The third part guarantees the admissibility of event-based control updates for each agent. The robustness of the proposed approach is validated through simulation and real-time experiments using three Pioneer P3-DX mobile robots in a multiagent framework. The real-time experimental results prove the reduction in computational burden of the entire system as control updates for two followers are found to be approximately 28.33% and 23.33%, respectively, in the presence of disturbances.

Finite-Time Robust Admissible Consensus Control of Multirobot System Under Dynamic Events

Malyshev, Dmitry;
2021-01-01

Abstract

This article addresses the problem of event-based consensus in a leader-follower multiagent system framework prone to external bounded disturbance. The proposed approach has three parts. The first part defines a novel measurement error based on sliding surface for super-twisting sliding-mode controller. The Lyapunov stability analysis is then used to derive a dynamic event-triggering condition for control updates. The event-based control updates guarantee stability along with the desired consensus amongst agents (robots). The second part derives a bound on reaching time to the sliding surface, thereby guaranteeing finite-time consensus control for each agent. The third part guarantees the admissibility of event-based control updates for each agent. The robustness of the proposed approach is validated through simulation and real-time experiments using three Pioneer P3-DX mobile robots in a multiagent framework. The real-time experimental results prove the reduction in computational burden of the entire system as control updates for two followers are found to be approximately 28.33% and 23.33%, respectively, in the presence of disturbances.
2021
Admissibility
consensus control
event-trigger
Lyapunov stability
sliding-mode control
File in questo prodotto:
File Dimensione Formato  
2020 Finite-Time Robust Admissible Consensus Control.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact