Spin-transfer torque magnetic tunnel junction (STT-MTJ) technology is an attractive solution for designing non-volatile Logic-in-Memory (LIM) architectures. This work explores a smart material implication (SIMPLY) LIM scheme based on nanoscale STT-MTJs. The SIMPLY architecture is benchmarked against the conventional material implication (IMPLY) logic. Obtained results prove that for similar performance the STT-MTJ based SIMPLY scheme ensures more reliable operation (i.e., lower error rate by more than three orders of magnitude) and an energy saving of −70% than its IMPLY counterpart, at the only cost of minimal area overhead.

STT-MTJ Based Smart Implication for Energy-Efficient Logic-in-Memory Computing

De Rose R.;Crupi F.;Lanuzza M.
2021-01-01

Abstract

Spin-transfer torque magnetic tunnel junction (STT-MTJ) technology is an attractive solution for designing non-volatile Logic-in-Memory (LIM) architectures. This work explores a smart material implication (SIMPLY) LIM scheme based on nanoscale STT-MTJs. The SIMPLY architecture is benchmarked against the conventional material implication (IMPLY) logic. Obtained results prove that for similar performance the STT-MTJ based SIMPLY scheme ensures more reliable operation (i.e., lower error rate by more than three orders of magnitude) and an energy saving of −70% than its IMPLY counterpart, at the only cost of minimal area overhead.
2021
Compact modeling
Logic-in-memory
Material implication
SIMPLY
STT-MTJ
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/323191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact