Proteins are widely used in the formation and stabilization of multiphase systems, thanks to their ability to adsorb at the interface reducing the interfacial tension and promoting the formation of viscoelastic layers. Owing to the growing consumer demand, the food industry is moving toward the growing use of plant-based proteins, suitable for consumers who do not eat products of animal origin, for either ethical or health reasons. Nevertheless, the scientific literature lacks information on the surface activity and emulsifying ability of these proteins. In this work, the interfacial properties of soy, hemp and brown rice isolate proteins were investigated at the interface with commercial sunflower oil (O/W) to evaluate their characteristics in view of potential uses in food applications such as emulsions, sauces, dressing, topping and soft foods. Dilatational and shear kinematic, with pendant drop and magnetic rod techniques, respectively, were used. The dilatational analysis was performed in static and dynamic conditions, to obtain the equilibrium adsorption isotherms and the rheological parameters of the interfacial layers under both oscillation and stress relaxation. The interfaces were studied in shear conditions with small amplitude oscillations and creep tests. The obtained results evidenced that all tested proteins are able to build a strong viscoelastic layer with properties comparable to those of animal proteins. Brown rice protein seems particularly effective in reducing the interfacial tension even if shear tests evidence that the interface is weaker than that obtained using hemp or soy protein. Hemp protein seems very promising for potential practical uses yielding intermediate interfacial tensions and strong viscoelastic layers.

Interfacial behavior of vegetable protein isolates at sunflower oil/water interface

Mileti O.;Baldino N.
;
Lupi F. R.;Gabriele D.
2023-01-01

Abstract

Proteins are widely used in the formation and stabilization of multiphase systems, thanks to their ability to adsorb at the interface reducing the interfacial tension and promoting the formation of viscoelastic layers. Owing to the growing consumer demand, the food industry is moving toward the growing use of plant-based proteins, suitable for consumers who do not eat products of animal origin, for either ethical or health reasons. Nevertheless, the scientific literature lacks information on the surface activity and emulsifying ability of these proteins. In this work, the interfacial properties of soy, hemp and brown rice isolate proteins were investigated at the interface with commercial sunflower oil (O/W) to evaluate their characteristics in view of potential uses in food applications such as emulsions, sauces, dressing, topping and soft foods. Dilatational and shear kinematic, with pendant drop and magnetic rod techniques, respectively, were used. The dilatational analysis was performed in static and dynamic conditions, to obtain the equilibrium adsorption isotherms and the rheological parameters of the interfacial layers under both oscillation and stress relaxation. The interfaces were studied in shear conditions with small amplitude oscillations and creep tests. The obtained results evidenced that all tested proteins are able to build a strong viscoelastic layer with properties comparable to those of animal proteins. Brown rice protein seems particularly effective in reducing the interfacial tension even if shear tests evidence that the interface is weaker than that obtained using hemp or soy protein. Hemp protein seems very promising for potential practical uses yielding intermediate interfacial tensions and strong viscoelastic layers.
2023
Brown rice protein isolate
Hemp protein isolate
Interfacial rheology
Interfacial tension
Soy protein isolate
Vegetable proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/340503
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact