This brief deals with the impact of spin-transfer torque magnetic random access memory (STT-MRAM) cell based on double-barrier magnetic tunnel junction (DMTJ) on the performance of a two-layer multilayer perceptron (MLP) neural network. The DMTJ-based cell is benchmarked against the conventional single-barrier MTJ (SMTJ) counterpart by means of a comprehensive evaluation carried out through a state-of-the-art device-to-algorithm simulation framework. The benchmark is based on the MNIST handwritten dataset, Verilog-A MTJ compact models developed by our group, and 0.8 V FinFET technology. Our results point out that the use of DMTJ-based STT-MRAM cells to implement digital embedded non-volatile memory (eNVM) synaptic core allows write/read energy and latency improvements of about 53%/61% and 66%/17%, respectively, as compared to the SMTJ-based equivalent design. This is achieved by ensuring a reduced area footprint and a learning accuracy of about 91%. Such results make the DMTJ-based STT-MRAM cell a good eNVM option for neuro-inspired computing.

Efficiency of Double-Barrier Magnetic Tunnel Junction-Based Digital eNVM Array for Neuro-Inspired Computing

Garzon E.;Crupi F.;Lanuzza M.
2023-01-01

Abstract

This brief deals with the impact of spin-transfer torque magnetic random access memory (STT-MRAM) cell based on double-barrier magnetic tunnel junction (DMTJ) on the performance of a two-layer multilayer perceptron (MLP) neural network. The DMTJ-based cell is benchmarked against the conventional single-barrier MTJ (SMTJ) counterpart by means of a comprehensive evaluation carried out through a state-of-the-art device-to-algorithm simulation framework. The benchmark is based on the MNIST handwritten dataset, Verilog-A MTJ compact models developed by our group, and 0.8 V FinFET technology. Our results point out that the use of DMTJ-based STT-MRAM cells to implement digital embedded non-volatile memory (eNVM) synaptic core allows write/read energy and latency improvements of about 53%/61% and 66%/17%, respectively, as compared to the SMTJ-based equivalent design. This is achieved by ensuring a reduced area footprint and a learning accuracy of about 91%. Such results make the DMTJ-based STT-MRAM cell a good eNVM option for neuro-inspired computing.
2023
double-barrier magnetic tunnel junction (DMTJ)
energy-efficiency
MNIST dataset
multilayer perceptron (MPL)
online classification
STT-MRAM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/348001
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact