This brief presents an energy-efficient level shifter (LS) able to convert extremely low level input voltages to the nominal voltage domain. To obtain low static power consumption, the proposed architecture is based on the single-stage differential-cascode-voltage-switch scheme. Moreover, it exploits self-adapting pull-up networks to increase the switching speed and to reduce the dynamic energy consumption, while a split input inverting buffer is used as the output stage to further improve energy efficiency. When implemented in a commercial 180-nm CMOS process, the proposed design can up-convert from the deep subthreshold regime (sub-100 mV) to the nominal supply voltage (1.8 V). For the target voltage level conversion from 0.4 to 1.8 V, our LS exhibits an average propagation delay of 31.7 ns, an average static power of less than 60 pW, and an energy per transition of 173 fJ, as experimentally measured across the test chips.
An Ultralow-Voltage Energy-Efficient Level Shifter
LANUZZA, Marco
;CRUPI, Felice;DE ROSE, RAFFAELE;STRANGIO S;
2017-01-01
Abstract
This brief presents an energy-efficient level shifter (LS) able to convert extremely low level input voltages to the nominal voltage domain. To obtain low static power consumption, the proposed architecture is based on the single-stage differential-cascode-voltage-switch scheme. Moreover, it exploits self-adapting pull-up networks to increase the switching speed and to reduce the dynamic energy consumption, while a split input inverting buffer is used as the output stage to further improve energy efficiency. When implemented in a commercial 180-nm CMOS process, the proposed design can up-convert from the deep subthreshold regime (sub-100 mV) to the nominal supply voltage (1.8 V). For the target voltage level conversion from 0.4 to 1.8 V, our LS exhibits an average propagation delay of 31.7 ns, an average static power of less than 60 pW, and an energy per transition of 173 fJ, as experimentally measured across the test chips.File | Dimensione | Formato | |
---|---|---|---|
TCSII2538724.pdf
accesso aperto
Descrizione: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The publisher version is available at https://ieeexplore.ieee.org/document/7426416; DOI: 10.1109/TCSII.2016.2538724. Source: IEEE
Tipologia:
Documento in Post-print
Licenza:
Copyright dell'editore
Dimensione
776.23 kB
Formato
Adobe PDF
|
776.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.